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ABSTRACT

A technique is developed for estimating the components of the se-

quence of correlated random vectors {xl, x2, "", x., "" ), when given

the sequence of linearly related data vectors (¢_1, ¢_,,, "'" ,¢)o, "'" }. It is

shown that a necessary and sufficient condition that the minimum

variance estimate of xo depend only upon _, and the previously com-

puted estimate of xo 1 is that all xj be "sequentially correlated." This

is a condition placed upon the covariance matrix describing the other-

wise unspecified physical process that generates the xi. Examples

of sequentially correlated processes are given, and an application to

the deep-space orbit determination problem is discussed.

I. SUMMARY'

This Report develops a technique for sequentially ob-

taining the minimum variance estimate of the components

of the vectors xi in the time-ordered sequence of corre-

lated stochastic vectors

{Xl_ X2_ •.- Xri_ • . "}

when given observed data linearly related to the xi. The

stochastic vectors x_ are the values x(t,) at the discrete

times

(tt, t2, "" ", tn, ""}

where x(t) is the output of some unspecified physical

process. It is assumed that

x_ =0

and that the correlations

[_ xT] = A,

and

[,,j = e,,
are known. The "noise" on the observations is considered

to be imbedded in the x_, thus the observations are of

the form

¢, =- _(t,) = Al xi

where Aj is a known matrix.

1Notation: All random variables are assumed to be column vectors

which are denoted by boldface type. Matrices are denoted by ital-

icized capital letters; I is the identity matrix. The superscript T

indicates the transpose of a matrix or vector, and the subscript i
refers to the time t, The bar (-) over a quantity indicates the

statistical average over the ensemble of all experiments. The asterisk

indicates the minimum variance estimate of the quantity xt, con-

sidering all data up to and including time t_, while the _" indicates

the estimate of the x_ based only upon x__,. See the Nomenclature

for definitions of symbols.
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Since the data are gathered and estimates are made
only at the discrete times ti, the Gauss-Markoff theorem

can be applied to yield a minimum variance estimate of

any x_. This estimate depends, in general, upon all ob-

served data up to and including time ti. The situation

becomes unwieldly if a large number of observations are

gathered, but Kalman (Ref. 1) shows that a relatively

simple iterative estimation procedure can be performed
if it is postulated that each bit of observed data arises

from sampling the output of a linear system excited by

uncorrelated, Gaussian error sources (see Part V, the

linear control process). In this case, only the statistics of

the most recent estimate of the state of the system need

be considered when processing each new data point,

making the situation much more tractable. It is the pur-
pose here to develop a similar iterative estimation tech-

nique without constructing such a system model, thereby

demonstrating the most general type of stochastic process

that can be treated in this fashion and producing estima-

tion formulas that do not depend upon dealing with
uncorrelated error sources.

Given the sequence of data vectors

.,.)
where

f_i = ai xl

it is shown that a necessary and sufficient condition that

the minimum variance estimate of x_ depend only upon

the observation _j and the previous estimate x* is that all
xt be "sequentially correlated", that is,

Rk, Rkj Rj_ for all t, _< tj <tk (1)

where

Rji = Pit A_ 1

is defined to be the "normalized correlation" between xj

and x,. In this case, the estimate of xj, given the previous

estimate x* but not the observation Cj, is

_j --- Rj, x* (2)

Defining the errors

and

then

EjEjJ

A A

= (xj - xj)

-- (x*- ,,, )

The minimum variance estimate of xj then becomes

x* xj + Wj(_ ^= " - Ajxj) (4)

where

Wj = [_j_"_] AT_Aj[_,_'--fj ] A'_]-' (5)

The covariance of the error in x_' is

The process is repeated at time tk _ t_, and the estima-

tion proceeds iteratively to conclusion.

Examples of sequentially correlated processes are
given, and the relation to Kalman's result is discussed.

Ih THE GAUSS-MARKOFF THEOREM

The sequential estimation technique discussed in this

Report is developed from the well-known Gauss-Markoff

theorem (Ref. 2). In this Part, a general form of the

theorem will be presented.

Suppose a data vector _ is observed on some experi-
ment, and the value of some unknown random vector x

is to be estimated from the given _, where _ and x have

known statistical correlation over all such experiments.

It will be assumed that these quantities have zero a priori

mean, that is, _ -- 0 and _ -- 0. The specification of a
linear, unbiased minimum variance estimate leads to a

unique estimate of x. Let this estimate be

x* = KS

where K is a matrix to be determined. Note that x* is

unbiased, that is,

x* =0

2
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DEFINITION I: The linear unbiased estimate x* is said

to be a minimum variance estimate if the error covari-

ance matrix [_e r] is a minimum over all experiments,
where

This means that for any other estimate

x* = L¢

with error

cL = (x,- ,,)

the quadratic form associated with { [e-'_T,] - [7_]}

is positive semidefinite.

Theorem 1: The minimum variance estimate of x, given

¢, is

,,,-- [xcq (7),

The error in the x* has covariance

_- - [ xq (8)

Proof: Suppose the a priori eovarianee matrix A is given,
where

A= = (9)

Let

x* = K¢

where the elements of K are to be determined. Then

[,,T] = KA._KT __ gV_x -- Px_K T -_ Ax (10)

Let z be an arbitrary vector. Then from Definition 1 it

2As in Eq. (7), it will be assumed throughout this Report that the
inverse of all a priori covariance matrices exists. There is no loss of
generality in this assumption, since the condition can always be
realized in theory and in practice by eliminating the redundant
(perfectly correlated) variables from the problem.

follows that the quadratic form zT [_] z must be a

minimum with respect to all elements of K. This implies

0= [KA_-P,¢]SK+ {[K,%- P,_JSK) r (11)

Thus

K = r_ A; _ (12)

which will be defined as the "normalized correlation"

between x and ¢. Equation (8) follows from substituting

Eq. (12) into Eq. (10). This completes the theorem.

Theorem 1 is often presented in a different form when

discussing the process (Ref. 3)

¢ = Ax + n (13)

where x is constant over any given experiment and n is
noise on the observations that is not correlated with x.

If the a priori statistics over all experiments are

[xxT] = A,
and

= r

(P is usually assumed to be a diagonal matrix), then

[x¢ T] ----A,,A T (14)

[¢¢7] = AA°A T + r (15)

From Eq. (7) and Eq. (8),

x* = AoA T[AAoA T + F] '¢ (16)

[_x] _-- Ao- AoAT [AAoA T + F]-' AAo (17)

By a matrix identity (Ref. 4, p. 79),

x* = [h; _ + Arr-'A] -' [A_F -1 ¢] (18)

[,,T] = EaT, + ATF-,A]-1 (19)

If A,,--_ _ (no a priori information on x), then Eq. (18)
becomes

x* = [ATF 1A] ' [a'I'-' ¢] (20)

which is the classical result. If F is diagonal with equal

elements, Eq. (20) becomes the familiar least-squares
estimate.

3
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III. SEQUENTIAL ESTIMATION

This Report is concerned with the estimation of certain

time-varying vector random variables

x, = x(ti)

when given the sequence of observed data vectors

{#(t,), #(t2),'", #(t.), "-'}

where

#l = Atxt

An iterative estimation procedure will be sought, where

only the most recent estimate of the state of the system

will be considered in processing each new data point. It

will be shown in Part IV that this is possible if and only

if the quantities to be estimated are "sequentially corre-
lated." An intuitive derivation of the result will be pre-

sented here, and a more rigorous treatment will be given
in Part IV.

The motivation for this approach is the analysis of the

orbit determination process (Ref. 3) in the presence of

correlated measurement errors. The problem arises as

follows. Let

= F _¢'1 (21)
_' L__I y' + "'

[- __yi "1 (22)
Y' ---- L'_oJ y0

where yt is the coordinate deviation vector at time tt and

[0yt/_yo] is the state transition matrix that relates the

initial condition variations yo to yi. Equation (19) is

easily put into the form of Eq. (13) by constructing the
total observation vector

= ' "]
The dimension of ¢ = (number of data points/sample

time) X (number of sample times), but the estimate

(Eq. 19) is quite tractable if the noise on the data is un-
correlated. If this is not the case, however, it is convenient
to define

A,= rFLL ayiJ

= (YT,nT)X l

and thus

t = At xl

which is the problem formulation discussed above.

With this example in mind, consider a more general

process (see Fig. 1), where observations are being made

during an experiment in an effort to estimate the cor-
related stochastic variables

The first moment of the stochastic process is given by

xG=0

and the second moment by

!

i , i ;
2 I I ENSEMBLE RECORD s I

I i

t I tj t k fl

TIME

Fig. 1. The stochastic process

It will be convenient to define

and

Ai _ Pit

Rji = PjIATx

Suppose an estimate x* has been obtained, and, ignoring

all other information, an estimate of x_ (t_ > tt) is to be

made based on xt*. From Eq. (7), this ought to be

A

xj =/_j,_,* (28)

where Rji is the "normalized" a priori correlation between

xi and xj. The /" notation indicates that new data at tj

have not been considered in estimating xj. The error

expression is

A

_ = (_ - _,) = as, (,,i + ¢,) - ,,_ (_A)

4
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If it is assumed that _i is not correlated with xi or xj, the

matrix [_]is given by Eq. (3). Equations (4)covarianee

through (6)now follow directly by an application of
Theorem 1. In effect, this technique treats each _j as an

observation of xj and optimally combines the _j and ¢_j

to obtain the estimate x_'.

Certain elementary special cases offer an intuitive check

on this result:

1. No a posteriori information on x_ is available. Then

x_* =0

A
X} =0

and

2. No correlation exists between xj and x_. Then

Rjt : 0
A
xj =0

and

[ X'_T-1
_j_ j = Aj

3. Perfect correlation exists between xj and x_ (they

are the same quantities). Then

and

Rjt =I

A
Ij :Xt*

The conditions under which the sequential estimation

technique can be applied will be developed in Part IV.

It should be observed, however, that a sequential estimate

can always be made in engineering applications, and the

resulting error variance may be near minimum.

IV. PROOF OF THE FUNDAMENTAL THEOREM

In this Part, the results stated in the Summary will

be established by proving the fundamental theorem of

sequential estimation (Theorem 4). The derivation calls

upon well-known "escalator methods" for iteratively in-

verting symmetric matrices (Ref. 4).

DEFINITION 2: The stochastic vectors, xa, xb, xc, de-

fined at times t,, tb, to, respectively, are said to be sequen-

tially correlated when

for t, _< tb _< to, where

Pea : Pcb Abi Pb_ (25)

[,,bx:]

eo. = [xox:]

and Pcb and Pb_ are similarly defined.

Theorem 2: The minimum variance estimate of x_, given

(xa, Xb), depends only upon xh if and only if these quanti-

ties are sequentially correlated. The estimate in this case is

xc -- Rob Xb (26)

where

Rcb : PebAb 1

Proof: Let the covariance matrix describing x,, xb, xc be

I A, Pab Pac ]
A,b_ = Pb, Ab Pbe (27)

L Pc, Peb Ac

From Eq. (7),

, [4o = [eo,',e+b] A.
P_ Pab 1-1Ab [x:] (28)

5
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Equation (2,8) reduces to 3

^

,,c = (eo. - Fobi;, ebb)(B),,a

+ (-Pea + PcbA; 1 Pba) (B) (Pc,, A;1)xb

+ P_.. A_,1 xb

where

(29)

B = [P_b A;' Pb_ -- A,]-I _:0 (30)

(The existence of the B matrix is assumed, following Foot-

note 2.) The theorem thus follows directly from Eq. (29).

Theorem 3: A necessary and sufficient condition that the

minimum variance estimate of x,._, given the time-ordered

sequence

(xl, x_, "-', x.)

depend only on x. is that x_, x_, and Xn_ be sequentially
correlated for all i<n. The estimate in this case is

^

x_+, = Rn+u. x, (31)

Proof: Let

and

... ]
Xb _--" Xn

X c _ Xn+ 1

Then

eo_ = [_"_I] - [e,,,,_, eo+,_,..., eo_,,,,_,] (32)

P_b = [x_/] = Pn÷,,, (33)

P,,a = [_:] = [en,,,en.2,"" en,n-i] (34)

A,,= = A,, (35)

The proof now follows from Theorem 2 and the definition

of sequential correlation.

A sequentially correlated process is a generalized

Markoff process, as the following corrollary points out:

Corollary: A Gaussian stochastic process is Markovian if

and only if the correlation is sequential.

aFrom Ref. 3, p. 78.

Proof: A stochastic process is said to be Markovian if the

conditional probability of a future state depends only on

the present state but not on the past history of the process.
The process is said to be Gaussian if the x_ are Gaussian.

The minimum variance estimate completely determines
the conditional distribution of the estimate if the random

variables considered are chosen from Gaussian distri-

butions, since the estimate then is Gaussian and the mean

and variance are specified. This proves the corollary.

The difficulty remains that the x_, i = 1, --', n, are usu-

ally not given; only certain observations and the estimates
of the x_ that follow from them are available. Theorem 3

can be applied if the ¢_ or the x_* are sequentially cor-

related, but a more useful result would place a condition
on the parameters to be estimated. Theorem 4 is the

fundamental theorem which yields this result for the case

of observations that are linearly related to the parameters.

Theorem 4. (Tile fundamental theorem of sequential esti-

mation.) Let the observations (¢") taken up to and includ-

ing time t, be linearly related to the (Xl "'- x,}, i.e.,

¢_n =: Anz n : 0 A2 "'" 0 z _ (36)

0 O "" A_

where

• .. xT
znT _-- [XT_xT 2 _ _ n]

and A n is a matrix with nonrandom elements. Then the

minimum variance estimate of x_,_, given the minimum
variance estimates

is

A

in+l = Rn+l n X* (37), n

if and only if x.+_, Xn, and X i are seque_ially correlated for
i < n. The covariance of the error in x_+_ is

^ h T['n+l'n+l] = An+ 1 --Rn÷lrl tAr,. -- [_'-_T]f .PtT+l,n

(3s)

Proof: Let x,+_ be the estimate based on data up to, but

not including, time t,._. Then

^

,,.+,=
: [Xn+lZ'--_fiT] [znz'_---fiT]-,[znz--'_-_T][AnT] [_--"fi'_T]-l_n

= [Xn+ 1 z_T] [z_T]-I zn* (39)

6
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But Eq. (39) is identical in form with the estimate based

on the true z,; thus Eq. (37) follows directly from
Theorems 2 and 3.

Let
^ ^

En_. 1 = Xn+ 1 -- Xn+ 1 (40)

Then, from Theorem 1,

fi A T -- [,,,x:TjR:+,.°
(41)

But

[x:x:,] = [,,._.T] [,_°,_._]-_[_.,,_] --A° - [,.,T]
(42)

where

En = X* -- Xn (43)
n

Equation (38) follows from Eq. (41) and (42). This com-

pletes the theorem.

Theorem 4 is the foundation for the sequential esti-

mation procedure described in the Summary, for now

Theorem 1 can be applied to improve the estimate xn+l by

the incorporation of the new data gathered at time tn÷l.

Note that the x*+, so obtained is a minimum variance

estimate for the data set {¢_1,'" ',_ll+l}, but not for a data
set that includes the later measurements {_n.2, ¢,+a,'"}.

In most applications, however, it is sufficient to obtain a

best estimate of only the most recent state of the system.

V. EXAMPLES OF SEQUENTIALLY CORRELATED PROCESSES

A sequentially correlated process can be defined by specifying the

functional form of the normalized correlation matrices, or by describ-

ing the physical system which generates the stochastic vectors x(L).

Examples are given below:

1. The general functional form. Let

Rj, = F(tj) F -1 (ti)

where F is an arbitrary non-singular matrix. It can be shown that

Rji always has this functional form for a continuous sequentially

correlated process.

2. Perfectly correlated variables. Let x(t) be constant over any one

experiment; then

Rj_ = I

8. Uncorrelated variables. Let x_ and xj be uncorrelated; then

Rji = the matrix delta function

(Equation 1 holds for t_ < tj < tk.)

4. Simple exponential correlation. Let each component of x(t) be

exponentially correlated, and let the cross-correlations be zero; then

aji

exp{_(t_- t,)) 0 " 0 /

-1

___ 0 exp {fl(tj -- ti)) "' 0 J
0 0 "" exp {'_(L --tO}

7
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5. Orthogonal correlation. Let x(t) be orthogonally cor-

related in two dimensions; then

_cos (tj - ti) -sin (tj - ti)lRji = Lsin (tj - t,) cos (tj - tl)

It can be shown that a necessary and sufficient con-

dition that/lkt = Rkj R jr for all t_, tj, tk (not just

t_ _< tj _< tk) is that Rjl be orthogonal.

6. The stationary process. Let E be a constant matrix,
and let

Rj_ = exp[(tj- ti)E] = I + (tj - ti)E + ...

+ (tj -- ti)nE _ + ...
n!

It can be shown that a necessary and sufficient con-

dition that a continuous sequentially correlated proc-

ess be stationary is that Rj_ be of this form (Ref. 5).

7. General exponential correlation. Let the matrix C(t)

have the commutative property C(tj) C(t_) = C(t_)

C(tj), and take

Rj_ = exp[C(t,) - C(t,)]

(See Ref. 5 for a discussion of the matrix exponential.)

8. Scintillation noise. (See Fig. 2.) The scalar signal s(t)

is multiplied by the rando___m gain g(___t)to obtain
¢(t) = g(t) s(t), where g(t) = 1, s(t) = 0, and

Is(t,) g(tj)] -- 0. Let n(t) = g(t) - 1, and

x(t) = Fs(t) "]
Ls(t)n(t)J

AS I AS 2 AS n

Fig. 2. The sequentially correlated scintillation noise

Then

if(t) = s(t) + s(t)n(t) -- Ax(t)

where A -- [1, 1]. Thus x(t) is a sequentially corre-
lated process if both s(t) and n(t) are sequentially
correlated.

9. The linear control process." (See Fig. 3.) Let x(t) be

derived from the process shown below, where

It can be shown that this is the most general noise

model which will yield a sequentially correlated linear

control process.

_[_is model is discussed in Part VI.

XI
_'JI1s rl-I

Fig. 3. The sequentially correlated linear system

"lbn= A n X n

Xn

8
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Vl. DISCUSSION OF KALMAN'S MODEL

The linear control process of Part V is a generalization

of the model discussed by Kalman in Ref. 1, where he

postulated

[,,,,'T] = o

for all i, j. It is easily verified that in this case Eq. (8)
reduces to

^_

Note that a sequentially correlated process sampled at the

discrete times tt can be put into Kalman's form by simply

defining

and

UjL = Rji

[","T] = a,,A,RT,]

This replaces the true physical process with an artificial
one that has random discontinuities at the selected sam-

ple points ti. The covariance matrix of the "noise" on the

artificial process has the diagonal form

-[-,-T] o ... o .-. o-
o -.- 0 .. 0

0 0 ... .-. 0

t_ tz tl

With this construction in mind, the fundamental theorem

of sequential estimation demonstrates the most general

stochastic process that can be analyzed by Kalman's

method. It provides a simple means for constructing his

equivalent linear control process.

VII. CONCLUSION

An estimation procedure has been presented that is

quite practical for obtaining numerical answers to many

physical problems, and that provides a convenient ana-

lyt-ie framework for exploiting theoretical problems in

control theory. The only description of the system needed

is the mean and covariance matrix of the time-varying

vector x(tt). The assumptions required are (1) the se-

quential correlation condition on the covariance matrix

of the xi and (2) the linear relationship between the ob-
servations _ and the state vector x_. Since the statistical

description of a physical system is often not well known,

it is many times possible simply to postulate sequential

correlation and be assured of obtaining a reasonable esti-

mate. The extension of the result to include nonlinear

relationships between _l and x_ is not apparent. How-

ever, such a generalization might not be very useful since

the validity of a linear and unbiased estimate would be

called into question.

One of the limitations of this estimation technique is

that it depends so strongly on the a priori correlations,
which are often not well known. The estimation can be

thought of as a weighting process, where each new data

point is weighed against the previous (a priori) informa-

tion. This can lead to an erroneous result if the a priori
statistics are not correct.

9
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NOMENCLATURE

T superscript indicating the transpose of a matrix or vector

m indicates the statistical average of a quantity over the ensemble

of all experiments

Scalars

t

a, b, ..., n, ...

x, y, z, {k

8

L

a, B, _, "'"

S

g

Vectors

X

Xl

¢1

x,,

El

^

Xi

^
Ei

Z

Z n

n

n

yi

Matrices

I

Ax

AO

At

A0

time

subscripts referring to times ta, tb, "" ". The times are ordered

according to the alphabetic sequence, thus t_ ( tb < "".

subscripts on a covariance matrix indicating to which random
variables it applies

denotes a variation in the indicated quantity

a special subscript referring to a non-optimum (not minimum

variance) estimate

the exponential decay constants (example 4)

a signal to be detected (example 8)

the gain multiplying s (example 8)

a column vector with random, time-varying components

the value of x at the time ti, thus xi z x(t 0

an observation (data) taken at time tt, thus ¢_ = ¢(tl)

the minimum variance estimate of xi based on all observations

up to and including time t_

the error in x*, thus _l = x* - x_

the minimum variance estimate of x, based on all observations

prior to, but not including, time ti
A

the error in xi, thus _i = _i - xi

a dummy vector introduced to develop the proof of the Gauss-
Markoff theorem

a total random vector formed from all x_ up to and including

..., x r)time tn, thus z nr -- (xT,x2,

a total observation vector formed from all ¢i up to and including

timetn,thusCnr- (¢r T1,¢_, "", ¢_)
noise on an observation

the coordinate deviation vector at time t_, which is to be esti-

mated by the orbit determination process

the identity matrix

the covariance matrix describing the second moment of the
distribution of the random vector x

the covariance matrix similarly defined for the random vector

the covariance matrix similarly defined for the random vector x_

the covariance matrix similarly defined for the unknown param-

eter vector x (Eq. 14, 15)

10
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NOMENCLATURE (Cant'd)

Pji

Rjt

Wj

A

F

Ai

A"

B

C

K,L

E

E n

Ujl

F

the covariance matrix describing the linear correlation between

the random vectors xj and xl

the normalized correlation between xj and xj, given by Rj_ ----

PjiA; 1

the matrix which optimally weights each each new data point at

the time tj

a matrix which relates observations to unknown parameters in the

system (Eq. 13)

the covariance matrix of noise on the observations (Eq. 15)

a matrix which relates the observations _, to the random vectors

Xt

a matrix formed from all A_ matrices up to and including time

tn (Eq. 36)

a combination of matrices that appears in the proof of Theorem 2

a matrix introduced in example 7

dummy matrices introduced in the proof of the Gauss-Markoff
theorem

a constant matrix (example 6)

indicates E multiplied by itself n times

the state transition matrix relating x_ to xj in the linear control

process (example 9)

an arbitrary non-singular matrix introduced in example 1

REFERENCES

1. Kalman, R. E., "A New Approach to Linear Filtering and Prediction Problems,"

American Society of Mechanical Engineers Transactions, Series D, Vol. 82, No. 1,

March 1960, pp. 35-45.

2. Scheffe, H., The Analysis of Variance, John Wiley and Sons, New York, 1959.

3. Shapiro, I. I., The Prediction of Ballistic Missile Trajectories from Radar Observa-

tions, McGraw-Hill Book Company, New York, 1958.

4. Householder, A. S., Principles of Numerical Analysis, McGraw-Hill Book Company,

New York, 1953.

5. Bellman, R., Introduction to Matrix Analysis, McGraw-Hill Book Company, New York,

1960.

6. Smith, G. L., Schmidt, S. F., and McGee, L. A., Application of Statistical Filter Theory

to the Optimal Estimation of Position and Velocity Onboard a Circumlunar Vehicle,

NASA Technical Report R-135, Washington D.C., 1962.

11



JPL TECHNICAL REPORTNO. 32-445

ACKNOWLEDGMENTS

The author wishes to thank the members of the Systems Analysis

Section of the Jet Propulsion Laboratory who have aided and stimu-

lated the development of this analysis. In particular, the author is

indebted to C. Solloway, who provided valuable consultations and

who developed Examples 1 and 5 of Part V. The motivation for this

work was the treatment of correlated measurement errors in the orbit

determination problem, as described in Part III. The iterative approach

was suggested by the work of R. E. Kalman (Ref. 1), as applied by

S. F. Schmidt (Ref. 6).

12






